Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Acta Pharmaceutica Sinica ; (12): 1122-1132, 2017.
Article in Chinese | WPRIM | ID: wpr-779703

ABSTRACT

This study was designed to investigate the effect of 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glycoside(TSG)on hypoxia/reoxygenation(H/R)-induced oxidative stress injury and its potential mechanism in human bronchial epithelial cell(BEAS-2B)cells. BEAS-2B cells were exposed to H/R treatment. Level of intracellular ROS was detected using DCFH-DA probe and fluorescence microplate reader. Production of MDA and activity of SOD were evaluated with MDA and SOD kits. Nucleus was shaped by DAPI staining. Translocation of Bax to mitochondria was observed in MCF-7/GFP-Bax cells. Change in mitochondrial membrane potential was detected by JC-1 staining. Release of cytochrome C from mitochondria was detected by immunofluorescence. Expressions of mitochondrial/cytoplasmic Bax and cytochrome C, caspase-9, caspase-3, phosphorylated MAPK, HIF-1α and phosphorylated p53(p-p53)were determined by Western blotting. TSG significantly improved cell viability and reduced H/R-induced ROS production in BEAS-2B cells, while significantly decreased MDA production. It inhibited Bax translocation and nucleus fracture, reversed the decrease in mitochondrial membrane potential and inhibited the release of cytochrome C and following activation of caspase-9/caspase-3. Simultaneously, TSG down-regulated the signals of SAPK JNK1/2 and p38 MAPK without an impact in ERK1/2. It attenuated expression of HIF-1α and phosphorylation of p53. This study suggests that TSG could protect BEAS-2B against H/R-induced apoptosis, perhaps through the MAPK, HIF-1α and p53 pathways.

SELECTION OF CITATIONS
SEARCH DETAIL